当前位置:首页 > 技术 > Cortex-M3 > 正文内容

STM32CubeMX系列教程3:基本定时器

watrt6年前 (2017-12-16)Cortex-M312470
这一章我们在前一章GPIO的工程修改。复制GPIO的工程,修改文件夹名。点击打开STM32cubeMX的工程文件重新配置。开启定时器TIM3,选择内部时钟。

定时器就相当于单片机的闹钟,下面我们以基本定时器为例简单介绍一下定时器。

从上图我们可以看到,基本定时器主要由下面三个寄存器组成。
  • 计数器寄存器 (TIMx_CNT)

  • 预分频器寄存器 (TIMx_PSC)

  • 自动重载寄存器 (TIMx_ARR)

计数器寄存器 (TIMx_CNT)存储的是当前的计数值。预分频器 (TIMx_PSC)为多少个SK_PSC脉冲计数一次,如图192 预分频器的值为1(预分频寄存器默认为0,为不分频),则为两个脉冲计数一次。即为二分频。如果要10000分频,则预分频器的值为1000-1。


自动重装寄存器 (TIMx_ARR)存储的是计数器的溢出值,例如图194中计数器递增计数到36计数器溢出,触发一次事件。而实际上为37个脉冲触发一次溢出事件(从0开始计数)。

要确定定时的时间我们必须先确定CK_PSC的频率,TIM3配置中选择内部时钟作为时钟源,查看数据手册或者查看代码可以知道TIM3是挂接到APB1时钟线上。

内部时钟设置为不分频(CKD),则CK_PSC的时钟频率等于APB1的时钟频率108MHz,即108000 000Hz。若要定时时间为1s,则即可设置10800分频(预分频器寄存器 (TIMx_PSC)的值为10800-1),定时器的时钟CK_CNT的频率为10000Hz.则自动重载寄存器 (TIMx_ARR)设置为10000-1即定时为1s.TRGO为触发输出,可以触发内部ADC/DAC,这里我们没有用到这个功能,参数为默认设置。

定时器有如下三种计数模式
递增计数模式:计数器从 0 计数到自动重载值,然后重新从 0 开始计数并生成计数器上溢事件。
递减计数模式:计数器从自动重载值开始递减到 0,然后重新从自动重载值开始计数并生成计数器下溢事件。
中心对齐模式:计数器从 0 开始计数到自动重载值 – 1 ,生成计数器上溢事件;然后从自动重载值开始向下计数到 1 并生成计数器下溢事件。之后从0 开始重新计数。

在NVIC Settings框勾选开启定时器中断。优先级为默认。或者在NVIC配置中使能TIM3中断。


生成报告,以及生成代码,编译程序。

打开main.c文件。把main()函数里while循环上一章的代码删掉,while循环里面为空。在main.c文件后面USER CODE BEGIN 4 和 USER CODE END 4 中间添加中断回调函数。定时器中断处理函数中翻转一次LED1~LED4的电平。

/* USER CODE BEGIN 4 */
/**
  * @brief  Period elapsed callback in non blocking mode
  * @param  htim: TIM handle
  * @retval None
  */
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim)
{
    if (htim->Instance == htim3.Instance)
    {
        /* Toggle LED */
        BSP_LED_Toggle(LED1);
        BSP_LED_Toggle(LED2);
        BSP_LED_Toggle(LED3);
        BSP_LED_Toggle(LED4);
    }
}
/* USER CODE END 4 */


在main.c文件中while(1)循环前面添加如果代码启动基本定时器中断模式计数。

/* USER CODE BEGIN 2 */
     
  /*##-1- Start the TIM Base generation in interrupt mode ####################*/
  HAL_TIM_Base_Start_IT(&htim3);
     
/* USER CODE END 2 */


重新编译程序,编译通过后下载到Open746-C开发板。按复位可以看到LED1~LED4间隔1s闪烁一次。
    现在我们再次分析一下程序。工程中配置TIM3定时器选择内部时钟不分频作为时钟源,挂载到APB1时钟总线上(108MHz),设置为递增计数模式,预分频器设置为10800-1,即10800分频,最后定时器的频率为10000HZ。一个脉冲的时间为1/10000s。则若要定时1s,则自动重载寄存器设置为10000-1(如要定时0.2s,则自动重装寄存器设置为0.2/(1/10000)-1.即2000-1)。
    在main()函数中调用HAL_TIM_Base_Start_IT(&htim3)开启定时器,定时器从0开始计数,当计数到10000-1,即9999时,产出上溢出事件,计数器又从0开始继续计数。由于我们开启了定时器中断,所以发生上溢出事件时会触发定时器中断。程序会转跳到中断服务函数中运行。我们在中断服务函数中翻转LED的电平。下次定时器再次溢出触发中断继续翻转LED的电平。所以我们会看到LED不断闪烁。


分享给朋友:

相关文章

STM32CubeMX系列教程6:直接存储器访问 (DMA)

STM32CubeMX系列教程6:直接存储器访问 (DMA)

直接存储器访问 (DMA) 用于在外设与存储器之间以及存储器与存储器之间提供高速数据传输。可以在无需任何 CPU 操作的情况下通过 DMA 快速移动数据。这样节省的 CPU 资源可供其它操作使用。说白了DMA就是一个搬运工,将数据从一个地方搬到另一个地方而不需要CPU处理。        作为一个搬运工,要他正常工作必须要确定几个重要的参数。1.传输模式:数据从哪里搬到哪里。...

STM32CubeMX系列教程17:SDMMC

STM32CubeMX系列教程17:SDMMC

一、SDMMC简介    MMC:MMC就是MultiMediaCard的缩写,即多媒体卡    SD:SD卡为Secure Digital Memory Card, 即安全数码卡    SDIO:SD Input Output 带有输入输出接口,SDIO是在SD标准上定义了一种外设接口SD种类    SD卡:<=2GB    SDHC卡(SD High Capacity...

STM32CubeMX系列教程19:Quad-SPI

STM32CubeMX系列教程19:Quad-SPI

一.Quad-SPI简介        在第十章和第十一章中,我们介绍了标准的SPI总线,SPI由四根线控制,NSS为片选,SCK为时钟信号线。MISO,MOSI为数据线,一根作为输入,一根作为输出。        Quad-SPI,即四线SPI,由此可知其数据线比标准的SPI接口要多,最多支持四条数据线同时传输。连接单、双或四(条数据线) SPI Flash 存储介质。Quad-SPI总共有6根...

STM32CubeMX系列教程20:Nand Flash

STM32CubeMX系列教程20:Nand Flash

一、Nand Flash 简介        Flash 中文名字叫闪存,是一种长寿命的非易失性(断电数据不丢失)的存储器。可以对称为块的存储器单元块进行擦写和再编程,在进行写入操作之前必须先执行擦除。功能性分为两种:NOR Flash:允许随机存取存储器上的任何区域,以编码应用为主,其功能多与运算相关Nand Flash:主要功能是存储资料,适合储存卡之类的大量数据的存储。本章以K9F1G08U0E芯片为例讲解Nand Flash。如下为此芯片的数据手册...

发表评论

访客

看不清,换一张

◎欢迎参与讨论,请在这里发表您的看法和观点。